Warning: Use of undefined constant ‘logo’ - assumed '‘logo’' (this will throw an Error in a future version of PHP) in /home/customer/www/ewaste-expo.com/public_html/wp-content/themes/plastic-free-world/single.php on line 11

Redesign of solar power products and solutions

Redesign of solar power products and solutions

February 12, 2020
Tom Rommens

Current photovoltaic (PV) and battery systems are still conceived from a linear perspective, neglecting a possible second use for other applications and creating (hazardous) waste or low-grade and/or energy-intensive recycled products

In order to increase or maintain the (financial, environmental and social) value of existing and new power solutions, these solutions need to be conceived, installed and operated with a circular (business) model in mind. Without a technical redesign of power solutions and their components the creation of added value is not guaranteed.

The International Renewable Energy Agency (IRENA, 2016) estimates 1.7-8 million tons of PV panel waste by 2030 and 60-78 million tons by 2050, cumulatively, to enter the waste stream, unless mature circular business solutions are put in place by then. Currently, only a fraction of the installed PV systems has been removed for the first time. Similar trends are discerned within the even younger electric vehicle battery market. With a young solar power sector primarily focusing on efficiency, ‘circularity’ is not (yet) a primary concern. The recycling, repairing, reconditioning, remanufacturing, refurbishment and re-use of PV and battery components are difficult because the initial PV and EV battery systems were never designed to be a) easily demountable and b) used again for multiple and/or different applications. Due to a lack of awareness and design guidelines or decision support instruments, most producers do not have the knowledge – nor expertise – to design solar power solutions in a circular way. Furthermore, in a traditional business practice, in which panels and batteries are sold to customers, there is no (financial) incentive to make them demountable, robust or compatible.

A redesign of solar power products and solutions is required in order to shift:

  • From a static design for single-use toward an adaptable or versatile design to support changing needs and standards (re-usability);
  • From composite electronic devices using irreversible connections toward a kit of detachable single-material parts/components (recyclability and re-usability);
  • From different PV cell and battery types using different shapes and dimensions toward interchangeable components (compatibility).

Overall, CIRCUSOL strives to describe technological innovations to enhance the circularity of the PV modules, and the financial implications within a business context. The project aims to demonstrate innovative circular solar power solutions to create awareness and provide tangible information for producers, manufacturers and service providers.

More detailed action steps are as follows:

Development of circular design directives for components of PV and battery systems, in order to:

  • Reduce the number of components and materials in modules (hence, making it easier to recycle afterwards);
  • Increase the capability to disassemble PV and battery modules, without losing robustness regarding heavy weather conditions, fire and wear and tear.

First steps have been undertaken in other R&D projects, such as CABRISS6 and SUPER PV7. Also, from a software perspective, guiding is required to integrate battery management systems with updatable software, in order to maximize re-use.

  • Updating Eurocodes and other (national) building standards or directives to better design, dimension and install PV panels on flat roofs, in order to avoid premature failure due to heavy weather conditions;
  • Implementation of design directives and standardization rules into the development of new circular PV and battery products;
  • Remote monitoring of performance of PV modules through e.g. performance-based service contracts, in order to anticipate failure and accordingly, enhance reverse logistics of modules;
  • Development of a code of practice to determine the residual performance of second-life EV batteries for stationary applications;
  • Development and/or implementation (e.g. through pilot projects) of mature (automated) technology to:
    (1) Better identify valuable (and interfering) materials;
    (2) Disassemble/recover components for reuse or remanufacturing, and:
    (3) Recycle into useful materials, in order to absorb the vast number of PV panels installed in the beginning of the 21st century or earlier.

The long-term action of CIRCUSOL is standardization of shape and dimensions of battery and PV parts in order to increase the compatibility and interchangeability of components in different power solutions. This will make it easier to reuse them directly in multiple applications.

E-Waste World Conference & Expo 2020 takes place from Wednesday 18 November to Thursday 19 November at the Kap Europa, Frankfurt Messe, Germany. To register for this highly focused, solutions-driven event, please click here. For sponsorship and exhibition opportunities, please email peter@trans-globalevents.com

Pin It on Pinterest

Share This